Monday, May 30, 2016

Compulsive Foreign Language Syndrome: Man Becomes Obsessed With Speaking Fake French




You may have seen headlines such as: Florida Man Woke Up In A Motel Room Speaking Only Swedish. Or: Englishman wakes up speaking Welsh after stroke (“Rare brain disorder left English-speaking Alun Morgan only able to communicate in Welsh”). The first case was likely due to a fugue state, a type of dissociative disorder involving loss of personal identity and aimless wandering (Stengel, 1941). The second seems like an unusual example of bilingual aphasia involving loss of the ability to speak one's native language (rather than the more commonly affected second language).

Perhaps you've even seen paranormal claims like:
Under Hypnosis or Past Life Regression, A Physician's Wife Starts Speaking Swedish

. . .  In sessions conducted from 1955 to 1956, when Tania was under hypnosis, a personality emerged who spoke Swedish, a language that neither Tania nor Ken knew. As such, this represents a case of xenoglossy, where an individual can speak a language that has not been learned through normal means.

Tania was born in Philadelphia and as such, English was her native language. Her parents, who were Jewish, were born in Odessa, Russia. No one in the family had ever been to Scandinavia and they knew no one who could speak Swedish.

Xenoglossy is “the putative paranormal phenomenon in which a person is able to speak or write a language he or she could not have acquired by natural means.” Of course, there's always a logical explanation for such cases, but magical thinking leads people to believe that such phenomena are proof of past lives and reincarnation.


A New Case of False Xenoglossy

An amusingly written clinical report describes a 50 year old Italian man who stopped speaking his native Italian and insisted on speaking broken and somewhat fake French after a neurological event (Beschin et al., 2016). An abnormality in his basilar artery blocked the necessary flow of cerebrospinal fluid (CSF), with hydrocephalus and brainstem vascular encephalopathy as a result. A typical example of the condition (known as megadolicho basilar artery) in another patient is shown below.



Fig. 1 (Thiex & Mull, 2006). (A) CSF flow obstruction (arrow). (B) megadolicho basilar artery.


The man had no previous psychiatric history and retained the ability to speak perfect Italian. The clinical report includes the only instance of the word “fling” that I recall seeing in a scientific journal, so I'll quote at length:
He had superficially learned French at school, used it in his 20's due to a fling with a French girl but he has not spoken it for about 30 years. In his professional life he used English as his second language. Before brain damage he never manifested a particular attachment to French culture or French cuisine. His accent is not due to dysarthria and he speaks polished and correct Italian, his mother tongue. However, he now states that French is his preferred language refusing to speak in Italian spontaneously.
. . .

JC's French is maladroit and full of inaccuracies, yet he speaks it in a fast pace with exaggerated intonation using a movie-like prosody and posing as a typical caricature of a French man. His French vocabulary is reduced and he commits several grammatical errors but he does not speak grammelot or gibberish and never inserts Italian terms in his French sentences. He uses French to communicate with everybody who is prepared to listen; he speaks French with his bewildered Italian relatives, with his hospital inmates, with the consultants; he spoke French even in front of the befuddled Committee deciding on his pension scheme. He claims that he cannot but speak in French, he believes that he is thinking in French and he longs to watch French movies (which he never watched before), buys French food, reads French magazines and seldom French books, but he writes only in Italian. He shows no irritation if people do not understand him when he speaks in French.

He performed well on picture naming and verbal fluency tests in Italian, although he first tried to name the item in French (substituting category names like ‘vegetable’ for the low frequency word ‘asparagus’). His episodic memory was poor and he could not recall autobiographical incidents from the previous few years (but could recall earlier memories). He performed well on most other cognitive tests. But he did show some psychiatric symptoms that were secondary to the brain injury.
However, he presents with some delusions of grandeur, sleep disturbances and has some compulsive behaviours: he buys unnecessarily large quantities of objects (e.g., needing two hangers he bought 70) and he makes tons of bread to his wife's chagrin. He also shows unjustified euphoria (which he labels joie de vivre): for example in the morning he opens the windows and shouts bonjour stating that it is a wonderful day. He manifests signs of social disinhibition, for example proposing to organise a singing tour for his daughter's teenage friend or offering French lessons to his neighbours. These symptoms are indicative of secondary mania (Santos, Caeiro, Ferro, & Figueira, 2011) and were drug-resistant.

This is certainly a highly usual consequence of megadolicho basilar artery, but note that the subtitle of Beschin et al.'s article is “A clinical observation not a mystery.” There is no true xenoglossy here (or anywhere else, for that matter).


Further Reading

Man Wakes Up From Coma Speaking New Language: The media’s love of xenoglossy

Foreign Language Syndrome “There actually isn’t a legitimate foreign language syndrome...”


References

Beschin, N., de Bruin, A., & Della Sala, S. (2016). Compulsive foreign language syndrome: A clinical observation not a mystery. Cortex DOI: 10.1016/j.cortex.2016.04.020

Stengel, E. (1941). On the Aetiology of the Fugue States. British Journal of Psychiatry 87 (369): 572-599.

Thiex R, Mull M. (2006). Basilar megadolicho trunk causing obstructive hydrocephalus at the foramina of Monro. Surg Neurol. 65(2):199-201.




Jen speaks fake Italian on the IT Crowd.

Subscribe to Post Comments [Atom]

Wednesday, May 18, 2016

Acetaminophen Probably Isn't an "Empathy Killer"


Left: Belgian physician Dr. Wim Distelmans, a cancer specialist, professor in palliative care and the president of the Belgian federal euthanasia commission. Right: Generic acetaminophen.


What (or who) is an “Empathy Killer“? An Angel of Death Kevorkian-type who helps terminally ill patients with ALS or cancer put an end their excruciating pain? This is a very selfless act that shows extreme empathy for the suffering of others.

Or is an “Empathy Killer” a medication that dulls your numerical ratings of empathic concern for fictional characters ever so slightly? If you guessed the latter, you are correct. Here's the actual title of a new paper in SCAN: “From Painkiller to Empathy Killer: Acetaminophen (Paracetamol) Reduces Empathy for Pain.”

Oh the headlines. Truly painful.

Paracetamol doesn't just kill pain - it makes us less CARING

America's Most Common Drug Ingredient Could Be Making You Less Empathetic


Why Would a Headache Medication Make You Less Empathetic?

A popular line of research in Social Cognitive and Affective Neuroscience examines the commonalities between physical and social/psychological pain. IF there is indeed an overlap,1 one might ask some provocative questions about the underlying neural mechanisms. Do drugs that ease physical pain also soothe the pain of social rejection and existential angst?2 Several recent papers have reported that acetaminophen does exactly that (Dewall et al., 2010; Randles et al., 2013; Durso et al., 2015) although some pundits may beg to differ.3

The latest psychological study on this popular over-the-counter painkiller looks at empathy for another person's pain (Mischkowski et al., 2016). This work is based on the premise that the same neural machinery responsible for feeling our own physical and psychological pain (ACC, AI, mirror neurons don't ask but see Zaki et al., 2016) is invoked when observing the pain of others.


The Mystery of the Sliding Scales

[NOTE: Perceived Pain scores standardized in Tables 1, 3, 4 but not Table 2]

Can Tylenol (aka Parecemetol) lessen the pain you feel for others? I'll go out on a limb here and say probably not. Or not much, especially in a real-world sense. Here's why.

First, you have to understand that the experimental ratings of empathy were based on two different scales that varied from 1 (No pain at all) to 5 (Worst possible pain) OR from -4 (Worst possible pain) to +4 (Most possible pleasure). For the latter scale, the authors “reverse-coded participants’ ratings, so higher ratings indicated higher empathy for pain.”

Participants in Experiment 1 were given a placebo drink (n=40) or 1000 mg liquid acetaminophen (n=40). An hour later, they read short scenarios depicting other people in physical pain (e.g., cutting a finger) or social pain (e.g., getting rejected from college). Two major scores were obtained for perceived pain and personal distress. My reading is that these should yield a mean score between 1 and 5 for each measure.

ADDENDUM (May 18 2016): As pointed out by two Anonymous commenters, the Perceived Pain scores were standardized in Table 1. The same measure was not standardized in Table 2.

PERCEIVED PAIN For each scenario, we measured perceived pain with two measures. First, participants rated the pain of each protagonist using a scale from 1 (No pain at all) to 5 (Worst possible pain). Second, participants rated on three items how much each protagonist felt hurt, wounded, and pained on scales ranging from 1 (Not at all) to 5 (Extremely). We averaged items to create perceived hurt feeling measures across physical and social pain scenarios... Within each scenario type, both perceived pain ratings correlated highly... Therefore, we standardized and averaged these measures into indices of perceived physical and social pain.

PERSONAL DISTRESS Participants also rated their personal distress when reading each scenario. On a scale from 1 (Not at all) to 5 (Extremely), participants rated the extent to which they felt uncomfortable, pained, bothered, unpleasant, distress, as well as wanted to cringe while imagining the feelings of each scenario protagonist. We averaged items to create separate personal distress measures for physical and social pain scenarios...

My guess is that the authors made a mistake in their Tables, or else I misunderstood the scoring scheme. Let's take a look (click on image for a larger view).




For the first Dependent Variable, participants rated their own positive and negative feelings on the PANAS. General Affect ratings didn't differ between drug and placebo.

Next, look at Perceived Pain for Physical Pain Scenarios and Social Pain Scenarios. I won't belabor the p values here. Instead, focus on the red rectangles. [My mistake, Perceived Pain scores were standardized in Table 1. However, this does not affect my next comment.] These values are both close to zero (perhaps not significantly different from zero). But they don't seem to be on the 1 to 5 scale described above. The Personal Distress values ranged from “kind of a little bit” distressed for drug (2.15 and 2.00) to “kind of a little bit more” distressed for placebo (2.75 and 2.45). The participants who received acetaminophen are hardly in the land of the cruel and heartless psychopath. How much would these slight variations in personal distress ratings translate to real world empathy? We simply don't know.

Next, let's figure out the sliding scale issue. In Experiment 2:
Participants read the same eight physical and social pain empathy scenarios as in Experiment 1. After reading each scenario, participants rated perceived pain of the protagonist, using a scale from -4 (Worst possible pain) to +4 (Most possible pleasure). We reverse-coded participants’ ratings, so higher ratings indicated higher empathy for pain.

So here we have a scale that does include negative numbers, perhaps that scale was used for Perceived Pain in Exp. 1. Except ratings in Exp. 2 seems to use the 1 to 5 scale? It's hard to tell at this point. [Perceived Pain scores were not standardized in Table 2.] At any rate, the differences are small, and not significant for some of the comparisons.



There were other conditions involving noise blasts and watching a person being excluded from a round of cyberball (an old-school ball-tossing video game). Some of the values here were confusing as well. Or maybe I'm just confused... [Yes, I was confused. Perceived Pain scores were standardized in Tables 3 and 4.]


Noise blasts rated on a scale from 1 (Not unpleasant at all) to 10 (Extremely unpleasant).


Once again, in Table 4 we see mean values for Perceived Pain that are very close to zero. What does it mean? I will be happy to correct any erroneous interpretations of these Tables.

Now that I have corrected my mistakes, I still think it's hyperbole to say these differences mean that acetaminophen is an empathy killer in real life.

Neuroskeptic points out
Something odd about some of the datapoints... In Table 1, the mean for "perceived pain" for placebo is equal to the mean for acetaminophen * -1 (e.g. 0.22 vs -0.22, 0.19 vs. -0.19). The same is true in Table 4, two different values (e.g. 0.06 vs. -0.06, 0.04 vs -0.04).




Furthermore, does an Empathic Concern for Ostracized Player score of 1.68 (compared to 2.05) mean you're a less caring person? That acetaminophen has dulled your empathy? An empathy score of 2.05 (out of 5) while on placebo isn't exactly a heart-rending level of concern...




I could be wrong, but I don't think the Tylenol-fueled collapse of civilization is neigh. Next up? Ibuprofen! 4


Footnotes

1 Many have argued that the physical-emotional pain isomorphism is vastly overstated (e.g., Hayes and Northoff, 2012; The Neurocritic, 2012; Iannetti et al., 2013; Woo et al., 2014; Wager et al., 2016).

2 Well sure, you say, people have been self-medicating with opiates and alcohol for centuries. BUT here I mean mild nonprescription medications not known for having psychoactive properties.

3 Yeah, I've written about this a lot.

Tylenol Doesn't Really Blunt Your Emotions

Suffering from the pain of social rejection? Feel better with TYLENOL®

Existential Dread of Absurd Social Psychology Studies

Does Tylenol Exert its Analgesic Effects via the Spinal Cord?

Vicodin for Social Exclusion

4 I've wanted to see that study for years.


References

Dewall CN, Macdonald G, Webster GD, Masten CL, Baumeister RF, Powell C, Combs D, Schurtz DR, Stillman TF, Tice DM, Eisenberger NI. (2010). Acetaminophen reduces social pain: behavioral and neural evidence. Psychological Science 21:931-937.

Durso G, Luttrell A, Way B. (2015). Over-the-Counter Relief From Pains and Pleasures Alike: Acetaminophen Blunts Evaluation Sensitivity to Both Negative and Positive Stimuli. Psychological Science 26:750-758.

Mischkowski, D., Crocker, J., & Way, B. (2016). From Painkiller to Empathy Killer: Acetaminophen (Paracetamol) Reduces Empathy for Pain. Social Cognitive and Affective Neuroscience DOI: 10.1093/scan/nsw057

Randles D, Heine SJ, Santos N. (2013). The common pain of surrealism and death: acetaminophen reduces compensatory affirmation following meaning threats. Psychological Science 24:966-73.

Zaki J, Wager TD, Singer T, Keysers C, Gazzola V. (2016). The Anatomy of Suffering: Understanding the Relationship between Nociceptive and Empathic Pain. Trends Cogn Sci. 20(4):249-59.

Subscribe to Post Comments [Atom]

Wednesday, May 04, 2016

Imagine These Experiments in Aphantasia



When you hear the word “apple”, do you picture a Red Delicious apple or a green Granny Smith? Or neither, because you can't conjure up a visual image of an apple (or of anything else, for that matter)?
Aphantasia is the inability to generate visual images, which can be a congenital condition or acquired after brain injury (Farah, 1984). The most striking aspect of this variation in mental life is that those of us with imagery assume that everyone else has it, while those without are flabbergasted when they learn that other people can “see” pictures in their head.

Programming prodigy Blake Ross created a sensation recently with his eloquent essay on what's it's like to discover that all your friends aren't speaking metaphorically when they say, “I see a beach with waves and sand.”

Aphantasia: How It Feels To Be Blind In Your Mind

I just learned something about you and it is blowing my goddamned mind.
. . .

Here it is: You can visualize things in your mind.

If I tell you to imagine a beach, you can picture the golden sand and turquoise waves. If I ask for a red triangle, your mind gets to drawing. And mom’s face? Of course.
. . .

I don’t. I have never visualized anything in my entire life. I can’t “see” my father’s face or a bouncing blue ball, my childhood bedroom or the run I went on ten minutes ago. I thought “counting sheep” was a metaphor. I’m 30 years old and I never knew a human could do any of this. And it is blowing my goddamned mind.

It's worth reading Ross's account in its entirety to gain insight into the vast individual variation in our internal mental lives.

Although the term aphantasia is new (coined by Zeman et al., 2015), the condition isn't; Francis Galton published a paper on the Statistics of Mental Imagery in 1880. Similar to Ross, many of Galton's s friends (male scientists) were shocked to learn that others had imagery:1 
To my astonishment, I found that the great majority of the men of science to whom I first applied, protested that mental imagery was unknown to them, and they looked on me as fanciful and fantastic in supposing that the words 'mental imagery' really expressed what I believed everybody supposed them to mean. They had no more notion of its true nature than a colour-blind man who has not discerned his defect has of the nature of colour. They had a mental deficiency of which they were unaware, and naturally enough supposed that those who were normally endowed, were romancing.

The nature of mental images has been a topic of philosophical debate in cognitive science since the 1970s. Are mental images quasi-perceptual representations that activate visual areas of the brain (Kosslyn and colleagues), or non-pictorial, abstract, symbolic descriptions (Zenon Pylyshyn)? The Stanford Encyclopedia of Philosophy's entry on Mental Imagery provides an indispensable background on the philosophical, theoretical, and empirical debates in the field. As well, extensive research on individual differences in mental imagery (e.g., Kosslyn et al., 1984) can inform new studies on aphantasics.


Aphantasia and Paivio's Dual Coding Theory

To investigate the role of imagery in verbal memory, I propose a return to classic cognitive psychology experiments of the 1970s. Alan Paivio's Dual Coding Theory specifies two types of mental representations, or codes, for words and mental images (Paivio, 1971). The verbal code and imagery code are both activated by pictures, which can account for the picture superiority effect: pictures are better remembered than their verbal referents (i.e., words). The picture superiority effect should be abolished in those who cannot generate visual images.2

Even more interestingly, words that are highly imageable (concrete nouns like elephant) are better remembered than words that are rated low in imageability (abstract nouns like criterion). The original ratings from 1968 and the expanded 2004 version (concreteness, imageability, meaningfulness, familiarity) are available online: Clark and Paivio (2004) Norms. Lists of high and low imageable nouns that are carefully matched on other lexical factors (e.g., number of letters, word frequency, complexity) can be presented in a memory test. The recognition memory (or free recall) advantage for concrete, highly imageable words should be diminished or abolished in relation to self-reported imagery abilities.

I believe this experiment would address the objection of psychogenic aphantasia (“refusing to imagine”), because the concreteness advantage (using imagery during encoding) could not be mobilized as an explicit (or perhaps implicit) strategy. Given the hundreds (if not thousands) of Aphantasics who have made blog comments, joined Facebook groups and other communities, taken surveys, and of course contacted Dr. Zeman, the sample size might be quite respectable.





Footnote

1 Aphantasia seems bizarrely overrepresented in Galton's cronies. Here's his explanation:
My own conclusion is, that an over-readiness to perceive clear mental pictures is antagonistic to the acquirement of habits of highly generalised and abstract thought, and that if the faculty of producing them was ever possessed by men who think hard, it is very apt to be lost by disuse. The highest minds are probably those in which it is not lost, but subordinated, and is ready for use on suitable occasions. 
2 Of note here, some with aphantasia report severe deficits in autobiographical memory.

ADDENDUM (May 16 2016): see this website on Severely Deficient Autobiographical Memory (SDAM) - research conducted by Dr. Brian Levine.


References

Farah MJ. (1984). The neurological basis of mental imagery: A componential analysis. Cognition 18:245-72.

GALTON, F. (1880). I.--STATISTICS OF MENTAL IMAGERY Mind, os-V (19), 301-318 DOI: 10.1093/mind/os-V.19.301

Kosslyn SM, Brunn J, Cave KR, Wallach RW. (1984). Individual differences in mental imagery ability: a computational analysis. Cognition 18:195-243.

Paivio A. (1969). Mental imagery in associative learning and memory. Psychological Review 76: 241-263.

Paivio A. (1971, 2013). Imagery and verbal processes. Holt, Rinehart & Winston / Psychology Press.

Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery – Congenital aphantasia Cortex, 73, 378-380 DOI: 10.1016/j.cortex.2015.05.019


ADDENDUM (May 7 2016): via @vaughanbell, a new review article by the University of Exeter group (part of their project, The Eye's Mind):

MacKisack M, Aldworth S, Macpherson F, Onians J, Winlove C, Zeman A. (2016). On Picturing a Candle: The Prehistory of Imagery Science. Front Psychol. 7:515.

Not only Galton, Paivio, Kosslyn, and Pylyshyn but also Aristotle, Plato, Thomas Aquinas, and more.


- click on image for a larger view -

Subscribe to Post Comments [Atom]

eXTReMe Tracker